Chemistry

40

CHEMISTRY

GENERAL OBJECTIVES

The aim of the Unified Tertiary Matriculation Examination (UTME) syllabus in Chemistry is to
prepare the candidates for the Board’s examination. It is designed to test their achievement of the
course objectives, which are to:

(i)       understand the basic principles and concepts in chemistry;
(ii)      interpret scientific data relating to chemistry;
(iii)     deduce the relationships between chemistry and other sciences;
(iv)     apply the knowledge of chemistry to industry and everyday life.

DETAILED SYLLABUS

TOPICS/CONTENTS/NOTES  OBJECTIVES
1.  Separation of mixtures and   
     purification of chemical     
      substances

(a)  Pure and impure substances

(b)  Boiling and melting points.

(c)  Elements, compounds and mixtures

(d)  Chemical and physical changes.

(e)  Separation processes: 
       evaporation, simple and fractional distillation,
sublimation, filtration, crystallization, paper
and column  chromatography, simple and
fractional crystallization, magnetization,
decantation.

 2.  Chemical combination
Stoichiometry, laws of  definite and multiple
proportions, law of  conservation of matter,
Gay Lussac’s  law of combining volumes,
Avogadro’s law; chemical symbols,  formulae,
equations and their  uses, relative atomic mass 
 based on
12
C=12, the mole  concept and
Avogadro’s number.




3.    Kinetic theory of matter and Gas Laws

(a)  An outline of the kinetic theory of matter;
 (i)  melting,
 (ii) vapourization
Candidates should be able to:



(i)  distinguish between pure and impure     
substances;
(ii)  use boiling and melting points  as criteria  for
purity of chemical substances;
(iii)    distinguish between elements,  compounds and
mixture;
(iv)  differentiate between chemical and  physical
changes;
(v)   identify the properties of the  components of a
mixture;
(vi) specify the principle involved in each  separation
method.
(vii)  apply the basic principle of separation
processes in everyday life.


Candidates should be able to:
(i)    perform simple calculations involving formulae,
equations/chemical composition  and the mole
concept; 
(ii)  deduce the chemical laws from given
expressions/statements/data; 
(iii)   interpret graphical representations related 
         to these laws;
(iv)  deduce the stoichiometry of chemical reactions.


Candidates should be able to:

(i)     apply the theory to  distinguish between  solids,
liquids and gases;
(ii)   deduce reasons for change of state; Chemistry

41

TOPICS/CONTENTS/NOTES  OBJECTIVES
  (iii) boiling
  (iv) freezing
  (v) condensation
  in terms of molecular motion and Brownian
movement.

(b)(i)  The laws of Boyle, Charles, Graham  and 
Dalton (law of partial pressure); combined gas
law, molar volume and atomicity of gases.
    (ii) The ideal gas equation (PV = nRT).
    (iii) The relationship between vapour density of
gases and the relative molecular mass.

4.  Atomic structure and bonding 

(a) (i)The concept of atoms, molecules  and ions,
the works of Dalton,  Millikan, Rutherford,
Moseley, Thompson and Bohr. 

(ii) Atomic structure, electron configuration,
atomic number, mass number and isotopes;
specific examples should be  drawn from
elements of atomic number 1 to 20. 
(iii)  Shapes of s and p orbitals.


(b)  The periodic table and periodicity  of
elements,  presentation of the periodic table
with a view to recognizing families of
elements e.g. alkali metals, halogens, the
noble gases and transition  metals.  The
variation of the following properties:
ionization energy, ionic radii, electron
affinity and electronegativity.




(c)  Chemical bonding.
Electrovalency and covalency, the electron
configuration of elements and their tendency
to  attain the noble gas structure.  Hydrogen
bonding and metallic bonding as special
types of electrovalency and  covalency
respectively;  coordinate  bond as a type               
of covalent bond as illustrated by complexes
like [Fe(CN)6]
3-
,  [Fe(CN)6]
4-
,  [Cu(NH3)4]
2+
and [Ag(NH3)2]
+; van der  Waals’ forces
should be  mentioned as a special type of
bonding forces.

(d)  Shapes of simple molecules: linear ((H2, O2,
C12,HCl and  CO2), non-linear (H2O) and
tetrahedral; (CH4) and pyramidal (NH3).
(iii)  draw inferences based on molecular motion;

(iv)  deduce  gas  laws  from  given  expressions/
statements;
(v)  interpret graphical representations related  to
these laws;
(vi)  perform simple calculations based on these
laws, equations and relationships





Candidates should be able to:

(i)  distinguish between atoms, molecules and ions;
(ii)  identify the contributions of these scientists to
       the development of the atomic structure;
(iii) deduce the number of protons, neutrons and 
        electrons from atomic and mass numbers of
        an atom;

(iv) apply the rules guiding the arrangement of 
       electrons in an atom;
(v)   identity common elements exhibiting isotopy;
(vi)  relate isotopy to mass number;
(vii) perform simple calculations relating to isotopy; 
(viii) differentiate between the shapes of the orbitals;
(ix)   determine the number of electrons in s and 
         p atomic orbitals;
(x)    relate atomic number to the position of an 
         element on the periodic table;
(xi)   relate properties of groups of elements on the
periodic table;
(xii)  identify reasons for variation in properties 
         across the period and down the groups.   


(xiii) differentiate between the different types
         of  bonding.
(xiv) deduce bond types based on electron 
         configurations;
(xv)   relate the nature of bonding to properties 
          of compounds;






(xvi)  differentiate between the various shapes
          of molecules
 Chemistry

42

TOPICS/CONTENTS/NOTES  OBJECTIVES

(e)  Nuclear Chemistry:

(i)  Radioactivity – Types and properties of   
      radiations
        (ii) Nuclear reactions.  Simple equations, 
              uses and applications of  natural and 
              artificial radioactivity.





5.  Air 

(a)  The natural gaseous constituents and
their proportion in the air.
 – nitrogen, oxygen, water vapour, carbon
(IV) oxide and the noble  gases (argon
and neon).

(b)  Air as a mixture and some uses of the
noble gas.

     6.  Water 

(a)  Water as a product of the combustion
of hydrogen and its composition by
volume.
(b)  Water as a solvent, atmospheric gases
dissolved in water and their biological
significance. 
(c)  Hard and soft water:
Temporary and permanent
                hardness and methods of softening 
                hard water. 
(d)  Treatment of water for town supply.
(e)  Water of  crystallization, efflorescence, 
        deliquescence and hygroscopy. 
Examples of the substances exhibiting
these properties and their uses.

7.    Solubility
(a)   Unsaturated, saturated   and
supersaturated solutions.  Solubility
curves and simple deductions from
them, (solubility defined in terms of 
mole per dm3
) and simple
calculations.

xvii)   distinguish between ordinary chemical 
           reaction  and nuclear reaction;
(xviii) differentiate between natural and 
           artificial radioactivity;
(xix)   compare the properties of the different 
           types of nuclear radiations;
(xx)    compute simple calculations on the 
           half-life of a radioactive material;
(xxi)   balance simple nuclear equation;
(xxii) identify the various applications of 
           radioactivity.

Candidates should be able to:
(i)     deduce reason (s) for the existence of
         air as a mixture;
(ii)    identify the principle involved in the 
         separation  of air components;
(iii)   deduce reasons for the variation in the 
         composition of air in the environment;
(iv)   specify the uses of some of the 
         constituents of air.


Candidates should be able to:
(i)      identify the various uses of water;
(ii)     identity the effects of dissolved atmospheric     
          gases in water;
(iii)    distinguish between the properties of  hard and       
          soft water;
 (iv)   determine the causes of hardness; 
 (v)     identify methods of removal of hardness;
 (vi)    describe the processes involved in the 
           treatment of water for town supply;



 (vii)   distinguish between these phenomena;
 (viii)  identify the various compounds that exhibit 
           these phenomena.




Candidates should be able to:
(i)    distinguish between the different types of 
        solutions;
(ii)   interpret solubility curves;
(iii)  calculate the amount of solute that can 
        dissolve in a given amount of solvent at a 
        given temperature;
(iv)  deduce that solubility is temperature-dependent;
 Chemistry

43


TOPICS/CONTENTS/NOTES  OBJECTIVES

 (b)   Solvents for fats, oil and paints 
        and the use of such solvents 
        for the removal of stains.

 (c)    False solution (Suspensions and colloids):
         Properties and examples. 
         Harmattan haze and water paints as examples
         of suspensions and fog, milk, aerosol spray, 
         emulsion paints and rubber solution as
         examples of colloids.


8.    Environmental Pollution 
(a)     Sources and effects of pollutants.

 (b)    Air pollution:
         Examples of air pollutants such as       
         H2S, CO, SO2, oxides of nitrogen, 
         chlorofluorocarbons and dust.

    (c)     Water pollution
              Sewage and oil pollution should be 
             known.
(d)      Soil pollution:
              Oil spillage, Biodegradable and 
              non-biodegradable pollutants.

9.  Acids, bases and salts

    (a)  General characteristics and properties of
acids, bases and salts. Acids/base indicators,
basicity of  acids; normal, acidic,   basic and 
        double salts. An acid defined as a substance
whose aqueous solution furnishes H3O+ions
or as a proton donor. Ethanoic, citric and
tartaric acids as examples of  naturally
occurring organic acids, alums as examples
       of double salts, preparation of salts by
neutralization, precipitation and action of
acids on metals.  Oxides and
trioxocarbonate (IV) salts

(b)  Qualitative comparison of the 
      conductances of molar solutions of 
      strong and weak acids and bases, 
      relationship between conductance and
      amount of ions present.

(v)   relate nature of solvents to their uses;



(vi)  differentiate among  true solution, 
        suspension and colloids; 
(vii)  compare the properties of a true solution             
          and a ‘false’ solution.
(viii)  provide typical examples of suspensions 
           and colloids.


Candidates should be able to:
(i)    identify the different types of pollution and       
        pollutants;
(ii)   specify different sources of pollutants 
(iii)   classify pollutants as biodegradable and 
         non-biodegradable;
(iv)   specify the effects of pollution on the   
            environment;
(v)      identify measures for control of         
            environmental pollution.






Candidates should be able to:

(i)  distinguish between the properties of 
      acids and bases;
(ii)  identify the different types of acids 
       and bases;
(iii) determine the basicity of acids;
(iv) differentiate between acidity and 
       alkalinity using acid/base indicators;
(v)  identify the various methods of 
       preparation of salts;
(vi) classify different types of salts;


(vii)  relate degree of dissociation to strength 
         of   acids and bases;
(viii)  relate degree of dissociation to 
         conductance;

 Chemistry

44

TOPICS/CONTENTS/NOTES  OBJECTIVES


      (c)   pH and pOH scale; Simple calculations

             

       (d)  Acid/base titrations.





(e)  Hydrolysis of salts: Principle
      Simple examples such as 
      NH4Cl, AlCl3, Na2CO3 and CH3COONa 



10.  Oxidation and reduction 

(a) Oxidation in terms of the addition of 
oxygen or removal of hydrogen.
(b)  Reduction as removal of oxygen or 
       addition of hydrogen.
(c)  Oxidation and reduction in terms of
electron transfer.
(d) Use of oxidation numbers.               
Oxidation and reduction treated as change
in oxidation number and use of oxidation
numbers in balancing simple equations.
(e) IUPAC nomenclature of inorganic
compounds using oxidation number.
(f) Tests for oxidizing and reducing agents.




11.   Electrolysis
(a)  Electrolytes and non-electrolytes. 
      Faraday’s laws of electrolysis.
(b) (i)  Electrolysis of dilute H2SO4, aqueous 
CuSO4, CuC12 solution, dilute and
concentrated NaC1 solutions and
fused NaC1 
(ii) Factors affecting discharge of ions at
the electrodes.



(ix)   perform simple calculations on pH and pOH; 



(x)    identify the appropriate acid-base 
         indicator;
(xi)   interpret graphical representation of 
         titration curves;
(xii)  perform simple calculations based on               
         the mole concept;
(xiii) balance equations for the hydrolysis 
         of salts;
(xiv) deduce the properties (acidic, basic, 
         neutral) of the resultant solution.


Candidates should be able to:
(i)    identify the various forms of expressing 
        oxidation and reduction;
(ii)   classify chemical reactions in terms of 
        oxidation or reduction;
(iii)  balance redox reaction equations;
(iv)  deduce the oxidation number of chemical 
        species;
(v)   compute the number of electron transfer
        in redox reactions;

(vi)  identify the name of redox species in a reaction
(vii) distinguish between oxidizing and reducing 
        agents in redox reactions. 
(viii) apply oxidation number in naming inorganic
compounds
(ix)   relate reagents to their oxidizing and reducing
abilities.


Candidates should be able to:
(i)   distinguish between electrolytes and non-
       electrolytes;
(ii)  perform calculations based on faraday as a 
       mole of electrons.
(iii) identify suitable electrodes for different 
       electrolytes.
(iv) specify the chemical reactions at the 
       electrodes;
(v)  determine the products at the electrodes;
(vi) identify the factors that affect the products
       of electrolysis;

 Chemistry

45

TOPICS/CONTENTS/NOTES  OBJECTIVES

(c)   Uses of electrolysis: 
        Purification of metals e.g. copper and 
        production of elements and compounds 
        (Al, Na, O2, Cl2 and NaOH).

(d)   Electrochemical cells:
        Redox series (K, Ca, Na, Mg,
        Al, Zn, Fe, Sn, Pb, H, Cu, Hg, Ag, Au,)
        half-cell reactions and electrode potentials. 
(Simple calculations only).

(e)  Corrosion as an electrolytic process, 
       cathodic protection of metals, 
       painting, electroplating and coating 
       with grease or oil as ways of 
        preventing iron from corrosion.

12.  Energy changes

(a)   Energy changes(∆H) accompanying physical
       and chemical changes:
       dissolution of substances in/or 
       reaction with water e.g. Na, NaOH,     
       K, NH4Cl. Endothermic (+∆H) and
exothermic (-∆H) reactions.
(b)   Entropy as an order-disorder 
        phenomenon: simple illustrations               
        like mixing of gases and dissolution 
        of salts.
(c)    Spontaneity of reactions:
        ∆G0
 = 0 as a criterion for equilibrium, ∆G 
        greater or less than zero as  a criterion for 
        non-spontaneity or spontaneity respectively.

13.  Rates of Chemical Reaction 

(a)  Elementary treatment of  the following factors
which can change the rate of a chemical
reaction:

(i)   Temperature e.g. the reaction    between HCl 
and Na2S2O3 or Mg and HCl




(vii)  specify the different areas of application of 
         electrolysis;




(viii)  identify the various electrochemical cells;
(ix)    calculate electrode potentials using half-
          cell reaction equations;



(x)   determine the different areas of 
        application of electrolytic processes;
(xi)  identify methods used in protecting metals.




Candidates should be able to:

(i)  determine the types of heat changes
      (∆H) in physical and chemical processes;
(ii)  interpret graphical representations of heat 
        changes;
(iii)  relate the physical state of a substance
        to the degree of orderliness;
(iv)  determine the conditions for spontaneity 
        of a reaction ;
(v)    relate  ∆H0
, ∆S0
 and ∆G0
 as the driving 
        forces for chemical reactions;
(vi)   solve simple problems based on the 
         relationships   ∆G0
=  ∆H0
 -T∆S0




Candidates should be able to:

(i)   identify the factors that affect the rates of a
chemical reaction;
(ii)   determine the effects of temperature on 
        the rate of reactions;




 Chemistry

46


TOPICS/CONTENTS/NOTES  OBJECTIVES

(ii)    Concentration e.g. the reaction between HCl
and Na2S2O3, HCl and marble and the iodine
clock reaction, for gaseous systems, pressure
may be used as concentration term.

(iii)  Surface area e.g. the reaction 
         between marble and HCl with 
         marble in 
(i)   powdered form 
(ii)  lumps of the same mass.

(iv)  Catalyst e.g. the decomposition 
        of H2O2 or KClO3 in the 
        presence or absence of MnO2

(b)   Reaction rate curves.
(c)   Activation energy
       Qualitative treatment of Arrhenius’ law and 
       the collision theory, effect of light on some
       reactions.  e.g. halogenation of alkanes





14.  Chemical equilibra
Reversible reactions and factors governing
the equilibrium position. Dynamic   
equilibrium.    Le Chatelier’s principle and       
equilibrium constant.  Simple examples to 
include action of steam on iron and                 
N2O4             2NO2. 
No calculation will be required. 


15.  Non-metals and their compounds
(a) Hydrogen: commercial production from
     water gas and cracking of petroleum 
     fractions, laboratory preparation,
     properties, uses and test for hydrogen.

  (b)     Halogens: Chlorine as a representative
element of the halogen. Laboratory
preparation, industrial preparation by
electrolysis, properties and uses, e.g.
water sterilization, bleaching,
manufacture of HCl, plastics and
insecticides. 


(iii)   examine the effect of concentration/pressure on   
         the  rate of a chemical reaction;
(iv)   describe how the rate of a chemical reaction is 
         affected by surface area;

(v)   determine the types of catalysts suitable for
different reactions and their effects;
(vi)  determine ways of moderating these effects in
chemical reactions.






(vii)  interpret reaction rate curves;
(viii) solve simple problems on the rate of reactions;
(ix)   relate the rate of reaction to the kinetic theory
of matter.
(x)    examine the significance of activation energy
to chemical reactions.
(xi)   deduce the value of activation energy (Ea)
from reaction rate curves.


Candidates should be able to:

(i)   identify the factors that affects the position
       of equilibrium of a chemical reaction;
(ii)  predict the effects of each factor on the position
       of equilibrium;
(iii) determine the effects of these factors on 
       equilibrium constant.


Candidates should be able to:
(i)   predict reagents for the laboratory and 
       industrial preparation of these gases and 
       their compounds.
(ii)  identify the properties of the gases and their 
       compounds.
(iii) compare the properties of these gases and 
       their compounds.
(iv) specify the uses of each gas and its
       compounds;
(v)  determine the specific test for each gas and its 
       compounds. 
(vi) determine specific tests for Cl
-
, SO4
2-
, SO3
2-
,
       S2-
, NH4
+, NO3
-
, CO3
2-
, HCO−
3
 Chemistry

47

TOPICS/CONTENTS/NOTES  OBJECTIVES

Hydrogen chloride and Hydrochloric acid:
Preparation and properties.  Chlorides and test for
chlorides.
(c)  Oxygen and Sulphur 
      (i)  Oxygen:
 Laboratory preparation, properties and uses.
Commercial production from liquid air. 
Oxides: Acidic,basic, amphoteric and  neutral,
trioxygen (ozone) as an allotrope and the   
importance of ozone in the atmosphere.
      (ii)  Sulphur:
 Uses and allotropes:
 preparation of allotropes is not expected . 
Preparation, properties and uses of sulphur(IV)
oxide, the reaction of SO2  with alkalis.
Trioxosulphate (IV) acid and its salts, the effect
of acids on salts of trioxosulphate(IV), 
Tetraoxosulphate(VI) acid:  Commercial 
preparation (contact process only), properties as
a dilute acid, an  oxidizing  and   a dehydrating
agent and uses. Test for SO4
2-

Hydrogen sulphide:  Preparation and properties
as a weak acid, reducing agent and precipitating
agent. Test for S2-

(d)  Nitrogen:
        (i) Laboratory preparation 
      (ii)  Production from liquid air
    (iii)  Ammonia:
            Laboratory and industrial 
            preparations (Haber  Process only),
            properties and uses, ammonium salts 
            and their uses, oxidation of 
            ammonia to nitrogen (IV) 
            oxide and trioxonitrate (V) 
            acid.
            Test for NH4
+
      (iv) Trioxonitrate (V) acid: 
             Laboratory preparation 
             from  ammonia; 
             properties and uses. Trioxonitrate (V) salt-     
             action of heat and uses. Test for NO3
-
 
      (v)  Oxides of nitrogen: 
             Properties.



(vii)  predict the reagents for preparation, 
         properties and uses HCl(g) and HCl(aq);
(viii) identify the allotropes of oxygen;
(ix)   determine the significance of ozone to 
         our environment.
(x)    classify the oxides of oxygen and their 
         properties


(xi)    identify the allotropes of sulphur and their 
          uses;

(xii)  predict the reagents for preparation, properties 
         and uses of SO2 and H2S;
(xiii) specify the preparations of H2SO4 and H2SO3, 
         their properties and uses.







(xiv)   specify the laboratory and industrial
           preparation of NH3;

  (xv)  identify the properties and uses of NH3;








(xvi)  identify reagents for the laboratory 
          preparation of  HNO3,  its properties and 
          uses;
(xvii) specify the properties of N2O, NO, NO2 gases.

   Chemistry

48


TOPICS/CONTENTS/NOTES  OBJECTIVES

The nitrogen cycle.

          (e)  Carbon:
                 (i)  Allotropes: Uses and 
                      properties
                 (ii) Carbon(IV) oxide- 
                       Laboratory preparation, properties
                        and uses. Action of heat on     
                        trioxocarbonate (IV) salts and test for
                        CO3
2-

               (iii)   Carbon(II) oxide: 
                        Laboratory preparation, properties
                         including its effect on blood; 
                         sources of carbon (II) oxide to 
                         include charcoal, fire and exhaust
                         fumes.
        (iv)     Coal: Different types, products
                   obtained from destructive 
                   distillation of wood and coal.
         (v)      Coke:  Gasification and uses.
                   Manufacture of synthetic gas and
                   uses.

     16.  Metals and their compounds

            (a)  General properties of metals
            (b)  Alkali metals e.g. sodium 
            (i)  Sodium hydroxide:-
                  Production by electrolysis of 
       brine, its action on aluminium, zinc and
lead ions.
                   Uses including precipitation of 
                   metallic hydroxides.
            (ii)  Sodium trioxocarbonate (IV)
                   and sodium hydrogen trioxocarbonate
(IV): Production by Solvay process,
properties and uses, e.g. 
                   Na2CO3 in the manufacture of glass.
           (iii)  Sodium chloride: its occurrence in
                    sea water and uses, the economic
                   importance of sea water and the 
                   recovery of sodium chloride.
             (c)  Alkaline-earth metals, e.g. calcium;
                    calcium oxide, calcium hydroxide
                    and calcium trioxocarbonate (IV); 
                    Properties and uses.  Preparation of
                    calcium oxide from sea shells, the
                    chemical composition of cement 
                    and the setting of mortar. Test for Ca2+.
   

 (xviii) examine the relevance of nitrogen cycle 
            to the environment.
(xix)    identify allotropes of carbon;
(xx)     predict reagents for the laboratory 
            preparation of CO2;
(xxi)    specify the properties of CO2 and its
            uses;
(xxii)  determine the reagents for the 
            laboratory preparation of CO;
(xxiii)  predict the effects of CO on human;


(xxiv)  identify the different forms of coal:
(xxv)   determine their uses;
(xxvi)  specify the products of the destructive
distillation of wood and coal;
(xxvii) specify the uses of coke and synthetic gas.

 





 Candidates should be able to:

(i)    specify the general properties of metals;
(ii)   determine the method of extraction suitable
         for each metal;
(iii)   relate the methods of extraction to the 
         properties for the metals;
(iv)   compare the chemical reactivities of  the metals;
(v)    specify the uses of the metals;
(vi)   determine specific test for metallic ions;
(vii)  determine the process for the production 
         of  the compounds of these metals;
(viii) compare the chemical reactivities of the
 compounds;
(ix)   specify the uses of these compounds;
(x)    specify the chemical composition of cement.




 




 Chemistry

49

TOPICS/CONTENTS/NOTES  OBJECTIVES
   
       (d)    Aluminium 
                      Purification of bauxite, electrolytic
extraction, properties and uses of
aluminium and its compounds.  Test
for A13+
       (e)  Tin
              Extraction from its ores.
              Properties and uses.



       (f)   Metals of the first transition series.
              Characteristic properties:
              (i)   electron configuration
              (ii)  oxidation states
              (iii) complex ion formation
              (iv) formation of coloured ions
              (v)  catalysis 

         (g)  Iron
                Extraction from sulphide and oxide
                ores, properties and uses, different forms
                of iron and their properties and 
                advantages of steel over iron.
                Test for Fe2+ and Fe3+

         (h)     Copper
                  Extraction from sulphide and oxide
                  ores, properties and uses of copper.
                  Preparation and uses of copper( II ) 
                  tetraoxosulphate(VI). Test for Cu2+

       (i)     Alloy
                Steel, stainless steel, brass, bronze,
     type- metal, duralumin, soft solder, 
                permallory and alnico (constituents and 
                uses only).

17.  Organic Compounds
        An introduction to the tetravalency of 
        carbon,  the general formula, IUPAC 
         nomenclature and the determination of
         empirical formula of each class of the 
          organic compounds mentioned below.

         (a)  Aliphatic hydrocarbons

         (i) Alkanes
                     Homologous series in relation 
                     to physical properties, 
                     substitution reaction and a few
                     examples and uses of halogenated
                     products.  Isomerism: structural 


(xi)    describe the method of purification of bauxite;



(xii)   specify the ores of tin;
(xiii)  relate the method of extraction to its
properties;
(xiv)  specify the uses of tin;


(xv)   identify the general properties of the first 
          transition metals;

(xvi)  deduce reasons for the specific properties
          of the transition metals;
(xvii) determine the IUPAC names of simple 
          transition metal complexes


(xviii)  determine the suitable method of 
            extraction of iron;
(xix)    specify the properties and uses of iron;
(xx)     identify the different forms of iron, their 
compositions, properties and uses.


(xxi)    identify the appropriate method of 
            extraction of copper from its compounds;
(xxii)    relate the properties of copper and its
            compound to their uses.
(xxiii)  specify the method for the preparation of   
            CuSO4;
(xxiv)  specify the constituents and uses of the   
            various alloys mentioned.
(xxv)   compare the properties and uses of alloys
            to pure metals.


Candidates should be able to:
(i)         derive the name of organic compounds from 
             their general formulae;
(ii)        relate the name of a compound to its structure;
(iii)       relate the tetravalency of carbon to its ability
             to form chains of compound (catenation);
(iv)       classify compounds according to their 
             functional groups;

(v)        derive empirical formula and molecular     
             formula, from given data; 
(vi)       relate structure/functional groups to specific
             properties;
(vii)      derive various isomeric forms from a given  Chemistry

50

TOPICS/CONTENTS/NOTES  OBJECTIVES
                     only (examples on isomerism should
                      not go beyond six carbon atoms).

Petroleum: composition, fractional
distillation and major products;
cracking and reforming,
Petrochemicals – starting materials of
organic syntheses, quality of petrol
and meaning of octane number.





(ii)  Alkenes
      Isomerism: structural and geometric
      isomerism, additional and 
      polymerization reactions, polythene
      and synthetic rubber as examples of 
      products of polymerization and its use
      in vulcanization.

(iii) Alkynes
       Ethyne – production from action of 
       water on carbides, simple reactions and
       properties of ethyne.

(b)     Aromatic hydrocarbons e.g. benzene - 
          structure, properties and uses.

(c)     Alkanols
         Primary, secondary, tertiary – production 
         of ethanol by fermentation and from 
         petroleum by-products.  Local examples
         of fermentation and distillation, e.g.
         gin from palm wine and other local 
         sources and glycerol as a polyhydric 
         alkanol.
         Reactions of OH group – oxidation as a 
         distinguishing test among primary, secondary 
         and tertiary alkanols (Lucas test).

(d)    Alkanals and alkanones.
         Chemical test to distinguish between 
         alkanals and alkanones.

(e)     Alkanoic acids.
         Chemical reactions; neutralization and 
         esterification, ethanedioic (oxalic) acid
         as an example of a dicarboxylic acid
         and benzene carboxylic acid as an 
         example of an aromatic acid.


    formula;
(viii)   distinguish between the different types of
           isomerism;
(ix)     classify the various types of hydrocarbons;
(x)      distinguish each class of hydrocarbons by their 
properties;
(xi)     specify the uses of various hydrocarbons;
(xii)    identify crude oil as a complex mixture
           of hydrocarbons;
(xiii)   relate the fractions of hydrocarbons to their
           properties and uses;
(xiv)   relate transformation processes to quality 
           improvement of the fractions;



(xv)   distinguish between various polymerization 
          processes;
(xvi)  specify the process involved in vulcanization;


(xvii) specify chemical test for terminal alkynes
 


(xviii) distinguish between aliphatic and aromatic 
           hydrocarbons;
(xix)   relate the properties of benzene to its structure


(xx)     compare the various classes of alkanols;
(xxi)    determine the processes involved in ethanol
            production;
(xxii)   examine the importance of ethanol as an 
            alternative energy provider;
(xxiii)  distinguish the various classes of alkanols;






(xxiv) differentiate between alkanals and alkanones;



(xxv)  compare the various types of alkanoic acids;






 Chemistry

51

TOPICS/CONTENTS/NOTES  OBJECTIVES
(f)   Alkanoates
       Formation from alkanoic acids and 
       alkanols – fats and oils as alkanoates.
       Saponification:
       Production of soap and margarine from
       alkanoates and distinction between 
       detergents and soaps.

(g)  Amines (Alkanamines) Primary, Secondary,     
 and tertiary 

(h) Carbohydrates 
      Classification – mono-, di- and
polysaccharides; composition, chemical tests
for simple sugars and reaction with
concentrated tetraoxosulphate (VI) acid. 
Hydrolysis of complex sugars e.g. cellulose
from cotton and starch from cassava, the uses
of sugar and starch in the production of
alcoholic beverages, pharmaceuticals and
textiles.

(i) Proteins:
     Primary structures, hydrolysis and tests
(Ninhydrin, Biuret, Millon’s and
xanthoproteic)
     Enzymes and their functions.

(j) Polymers:
     Natural and synthetic rubber; addition and
condensation polymerization.
-  Methods of preparation, examples and
uses. 
Thermoplastic and thermosetting plastics.



18. Chemistry and Industry
      Chemical industries: Types, raw materials and 
      relevancies; Biotechnology.

(xxvi)      identify natural sources of alkanoates;

(xxvii)    specify the methods for the production of 
               soap, detergent and margarine.
(xxviii)   distinguish between detergent and soap;



(xxix)     compare the various classes of alkanamine;


(xxii)  (xxx)      identify the natural sources of 
(xxiii)                 carbohydrates;
(xxiv)  (xxxi)     compare the various classes of 
(xxv)                 carbohydrates;
(xxxii)    infer the products of hydrolysis and 
               dehydration of carbohydrates;
(xxxiii)    determine the uses of carbohydrates;
(xxxiv)    specify the tests for simple sugars;




(xxxv)     identify the basic structure of proteins;
(xxxvi)   specify the methods and products of 
               hydrolysis;
(xxxvii)  specify the various tests for proteins;

(xxxviii) distinguish between natural and synthetic 
               polymers;
(xxxix)   differentiate between addition and 
               condensation polymerization processes;
(xl)         classify natural and commercial polymers 
               and their uses;
(xli)        distinguish between thermoplastics and
               thermosetting plastics.


Candidates should be able to :
(i)    classify chemical industries interms of 
  products;
(ii)  identify raw materials for each industry;
(iii)  distinguish between fine and heavy 
             chemicals;
(iv)  enumerate the relevance of each of these 
             industries;
(v)  relate industrial processes to biotechnology.


   Chemistry

52


RECOMMENDED TEXTS

1.  New School Chemistry for Senior Secondary Schools, Ababio, O. Y. (2009), (Fourth edition), 
Onitsha: Africana FIRST Publishers Limited.

2.  Senior Secondary Chemistry, Bajah, S.T.; Teibo, B. O., Onwu, G.; and Obikwere, A. Book 1 (1999), Books 2
and 3 (2000).  Lagos: Longman.

3.  Understanding Chemistry for Schools and Colleges, Ojokuku, G. O. (2012, Revised Edition), 
Zaria: Press-On Chemresources.

4.  Essential:  Chemistry  for Senior Secondary Schools, (2008), 2nd
  Edition,  I. A. Odesina, Lagos: Tonad
Publishers Limited.

5.  Countdown to WASSCE/SSCE, NECO, JME Chemistry, Uche, I. O.; Adenuga, I. J. and Iwuagwu, S. L.
(2003).  Ibadan: Evans.

Comments

Popular posts from this blog

How to make money online through YouTube